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What is Text-to-3D Generation?

� Task: Generate 3D content from natural language descriptions

| Input: Text prompt (e.g., "a red cartoon car")
| Output: 3D model (ideally textured mesh)

� Goal: High-quality 3D meshes that accurately reect text descriptions

� Applications: Gaming, AR/VR, content creation, product design



Instant Text-to-3D Generation from Natural Language



Current Methods: Optimization-based Methods

� Optimization-based methods - High quality but SLOW

| DreamFusion: Uses Score Distillation Sampling (SDS) to optimize NeRF
| MVDream: Multi-view di�usion models for 3D consistency
| Takes minutes to hours (thousands of optimization iterations)
| Intensive computation: rendering + backpropagation at each step



Optimization-Based Methods: High Quality but SLOW

Example of optimization-based approach (Proli�cDreamer)



Current Methods: Direct Generation Methods

� Direct generation methods - FAST but low quality

| Train large models to directly output 3D representation
| Generation within one minute
| Limited by insu�cient 3D training data
| Struggle with complex prompts and geometric details



Direct Generation Methods: Fast but Lower Quality

Example of direct generation approach (PI3D)



Our Approach

� Goal: Combine speed of direct methods with quality of optimization methods

� Key insight: Adapt existing 2D generative models (Stable Di�usion) for 3D

� Our solution: Progressive Rendering Distillation

| Adapt Stable Di�usion into a native 3D generator
| No 3D training data required
| Fast inference: generate high-quality 3D in seconds



Our Results: Instant High-Quality Text-to-3D Generation

All generated in just 1-2 seconds

Try our demo: huggingface.co/spaces/ZhiyuanthePony/TriplaneTurbo

https://huggingface.co/spaces/ZhiyuanthePony/TriplaneTurbo


Key Contributions

� Progressive Rendering Distillation (PRD)

| First method to adapt pretrained SD into a native 3D generator without 3D data
| Distills knowledge from multi-view di�usion models

� Parameter-E�cient Triplane Adapter (PETA)

| Adds only 2.5% trainable parameters to frozen SD
| First parameter-e�cient training for direct 3D content generation

� State-of-the-art performance

| Generates high-quality textured meshes in just 1.2 seconds
| Better quality and generalization to complex prompts
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Related Work: Key Methods in Text-to-3D Generation

� DIRECT-3D: Learning on Massive Noisy 3D Data (CVPR 2024)

| Trains on large-scale noisy 3D datasets with iterative cleaning
| Uses tri-plane di�usion model for e�cient 3D generation

� PI3D: Pseudo-Image Di�usion for Text-to-3D (CVPR 2024)

| Adapts Stable Di�usion to generate pseudo-images for 3D
| Leverages 2D di�usion models for 3D generation

� ATT3D: Amortized Text-to-3D Object Synthesis (ICCV 2023)

| Introduces amortized optimization across text prompts
| Shifts from per-prompt optimization to a universal generator



DIRECT-3D: Method Overview

Tri-plane di�usion model architecture from DIRECT-3D



DIRECT-3D: Learning on Massive Noisy 3D Data

� Noisy Data Training: Addresses data scarcity challenge (CVPR 2024)

| Training on large-scale noisy and unaligned 3D datasets
| Iterative optimization to automatically clean and align data

� Tri-Plane Di�usion Model

| Disentangles object geometry and color features
| Enhances e�ciency and provides important geometry priors

� 3D Super-Resolution: Enhances resolution from 128³ to 512³

� Geometry Consistency: Reduces issues like the Janus problem



Triplane Representation for 3D Content

A 3D representation can be decomposed into three orthogonal planes: left-right (xy), front-back
(xz), and up-down (yz)



PI3D: Based on Stable Di�usion

� Stable Di�usion: State-of-the-art text-to-image model

| Latent di�usion model (LDM) architecture
| Works by denoising random noise guided by text conditioning
| Operates in compressed latent space for e�ciency
| Trained on billions of image-text pairs

� PI3D adapts Stable Di�usion for 3D generation

| Leverages powerful 2D priors from Stable Di�usion
| Fine-tunes SD to output tri-plane representation instead of images
| Reuses SD's text understanding capabilities
| Maintains generation speed advantages of di�usion models



PI3D: Limitations in Output Quality

Examples of PI3D generation results

Key Limitations:

� Insu�cient geometric details

� Limited texture quality

� Poor representation of
complex concepts

� Multi-view consistency issues

� Still dependent on 3D
training data

Root Causes:

� Insu�cient and low-quality 3D training data

Note: PI3D employs Score Distillation Sampling (SDS) as a lightweight re�nement step to
improve results.



Score Distillation Sampling (SDS) in DreamFusion

Score Distillation Sampling optimizes 3D representation by matching rendered views with
di�usion model predictions (CVPR 2023)

� Key insight: Uses Stable Di�usion as a guiding model for 3D generation
| Measures consistency between 3D renderings and text description
| Provides gradient signals to update 3D representation parameters
| Leverages knowledge from 2D di�usion models trained on billions of images



ATT3D: Paradigm Shift from Optimization to Generation

ATT3D's core innovation: Shifting from per-prompt optimization to training a universal
text-to-3D generator



ATT3D: Amortized Text-to-3D Object Synthesis

� Key Innovation: Amortized optimization over text prompts (ICCV 2023)

| Trains a single model for multiple prompts simultaneously
| Shares computation across prompts, reducing training time
| Generalizes to unseen prompts without additional optimization

� Uses Score Distillation Sampling (SDS)

| Adopts DreamFusion's score distillation technique
| Transfers knowledge from 2D di�usion models to 3D
| But applies it across multiple prompts simultaneously

� Prompt Interpolation enables smooth transitions between text prompts

| Generates novel assets and simple animations
| Achieved by interpolating text embeddings during inference



From SDS to ATT3D: The Paradigm Shift

SDS in DreamFusion:

� Optimizes a speci�c 3D representation
for each text prompt

� Per-prompt optimization process

� Hours of computation for each new
prompt

� Formula:
Text! Optimizehours(�)! 3D

� Not reusable across di�erent prompts

ATT3D's Approach:

� Trains a generator that maps text to
3D

� One-time training process for many
prompts

� Fast inference for new prompts
(seconds)

� Formula:
Trainonce(G�)! [Text! G� ! 3D]

� Generator knowledge shared across
prompts



Limitations of Current Methods

� Key limitations of existing approaches:

Comparison of Text-to-3D Methods
Training from Scratch Adapted from SD

Data-driven Direct3D (Limited by data) PI3D (Still needs 3D data)
Score Distillation ATT3D (Low quality) Our Method (Best of both worlds)

� Rows: Training approach (Data-driven vs. Score Distillation)

� Columns: Model initialization (From Scratch vs. Adapted from SD)

� Our approach: Combine score distillation training with SD adaptation

| No need for 3D data + Leverages powerful SD priors
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Preliminaries: Di�usion Models

Stable Di�usion Training:

� Forward di�usion: gradually add noise
to images

� Train model to reverse this process
(denoising)

� Predict noise � at each step ��(zt; t; y)

| zt: Noisy latent at timestep t

| z0: Clean ground-truth latent
| �: Noise added to latent
| y: Text prompt embedding

� Loss: Ez;y;t;�[jj�� ��(zt; t; y)jj2]

Image Generation:

� Start with random noise zT � N (0; I)

� Iteratively denoise to generate image

� Conditioned on text embedding y

Score Distillation Sampling (SDS):

� Core technique in DreamFusion

� Transfers knowledge from 2D di�usion
to 3D

� Gradient:
r�LSDS = Et;�[w(t)(��(zt; t; y)� �)

@zt
@�

]

| �: 3D representation parameters
| �: Di�usion model parameters
| w(t): Time-dependent weight

� 3D Representations:

| NeRF: Neural Radiance Fields
(density + color)

| Mesh: Vertices and faces with
textures

� Slow process: requires
backpropagation at each step



Motivation: Why Progressive Rendering Distillation?

� Challenge 1: 3D Data Scarcity

| Existing 3D datasets are much smaller than image datasets
| � 5B text/image pairs vs. 50K text/3D pairs

| Poor texture quality and inconsistent object poses
| Cannot generalize well to diverse text prompts

� Challenge 2: Adapting SD for 3D Generation

| Traditional SD adaptation requires 3D ground-truth data
| This conicts with our goal to eliminate 3D training data dependency
| No previous attempt to adapt SD without 3D data

� Our Solution: Progressive Rendering Distillation

| Enables 3D-data-free distillation
| Accelerates generation through few-step inference
| Uses multiple teachers for high-quality supervision



Progressive Rendering Distillation (PRD)

Key innovation:

� Eliminates need for 3D
ground-truth data

� Denoises latent from random noise

� Uses multi-view teachers for
supervision

� Progressive steps allow few-shot
generation

Figure: PRD Scheme



PRD Scheme Detail

Figure: Progressive Rendering Distillation (PRD) Scheme



Progressive Rendering Distillation Algorithm

Require: Text prompt y, number of progressive steps K
Ensure: Generated triplane representation T

1: zT � N (0; I) . Initialize with random noise
2: for k = 1! K do
3: Sample random camera parameters c
4: ẑtk�1  DenoisingUNet(ztk ; tk; y; c) . Teacher denoising
5: Render multi-view images from triplane T
6: Compute distillation loss and update parameters
7: end for
8: return Triplane T for mesh extraction



Parameter-E�cient Triplane Adaptation (PETA)

Design principles:

� Triplane representation (geometry + texture)

� LoRA adaptation for convolution and
cross-attention layers

� Plane-speci�c LoRA for self-attention

� Only 2.5% additional parameters

LoRA (Low-Rank Adaptation): An e�cient
�ne-tuning technique that updates weights via
W =W0 +AB, where W0 is frozen pre-trained
weights and A;B are small low-rank matrices.

Figure: PETA architecture



PETA Architecture in Detail

Figure: Detailed view of Parameter-E�cient Triplane Adapter (PETA) architecture



MVDream: Multi-View Di�usion for 3D Generation

Core Innovations:

� Generates multi-view consistent
images for 3D supervision

� Based on Stable Di�usion architecture

� Dilated 3D self-attention mechanism
connecting all views

� Combines 3D rendering datasets and
2D image-text pairs for training

Technical Details:

� Uses 2-layer MLP for camera
parameter embedding

� Camera embedding added as residual
to time embedding

� Combines multi-view di�usion loss and
image di�usion loss

� Maintains original 2D model quality
while ensuring multi-view consistency

Key Problems Solved:

� E�ectively resolves the "Janus
problem" (multi-faced objects)

� Eliminates content drift between
di�erent views

� Improves stability and consistency of
3D generation

� Maintains correspondence between
generated content and text prompts

Application in Our Method:

� Serves as teacher model for multi-view
consistency supervision

� Guides triplane representation to
generate consistent visual content

� Combines with RichDreamer and SD
for complementary supervision

� Ensures high quality from any viewing
angle



MVDream: Method Overview

Overview of MVDream's multi-view di�usion architecture



RichDreamer: Normal-Depth Di�usion Model

Core Innovations:

� Addresses detail richness in text-to-3D
generation

� Di�usion model based on normal and
depth maps

� Pre-trained on LAION large-scale
dataset

� Fine-tuned on Objaverse for enhanced
object-level 3D generation

Advantages:

� Provides stronger geometric priors and
guidance

� Resolves material-lighting
entanglement in traditional methods

� Supports DMTet and NeRF
representations

� Generates higher quality geometric
details

Application in Our Method:

� Provides geometric supervision signals

� Guides 3D geometry generation via
normal and depth maps

� Improves surface details and
topological correctness

� Combines with multi-view consistency
to enhance generation quality



RichDreamer: Method Overview

Overview of RichDreamer's normal-depth di�usion architecture



RichDreamer: Demo Results

Demonstration of RichDreamer's generation capabilities



Contents

I Introduction

I Related Work

I Methodology

I Results

I Conclusion



Comparison with Existing Methods

Figure: Qualitative comparison with competing methods



Quantitative Results

C.S. " R@1 " Latency (s)
Shape-E 55.1 27.1 13.0
Direct3D 60.8 4.33 16.0
3DTopia 59.7 11.2 23.7
PI3D 65.9 25.2 3.00
GVGEN 51.1 2.44 49.2
LN3Di� 55.9 5.09 8.16
LGM 67.4 28.3 56.1
Ours 68.2 32.3 1.23
+More Text Data 75.1 46.0 1.23

Key advantages:

� Better quality (CLIP
score)

� Higher accuracy (R@1)

� 2-40x faster inference

� Scales well with more data



Scaling with More Text Data

� Training without 3D data allows scaling
to 1.7M text prompts

� First method to train on more than 1M
creative text prompts

� Better handling of challenging concepts

� Improved generation quality Figure: Sample results



Sample Results: Scaling with Text Data

More examples of our method's generation results with 1.7M text prompts



More Results: Scaling with Text Data

Figure: Additional results with 1.7M text
prompts

Figure: More diverse generation examples

� Demonstrates consistent quality across diverse prompts
� Shows improved handling of complex concepts
� Highlights the bene�ts of large-scale text-only training



Ablation Studies

The e�ect of progressive steps (K):

� K=1: Poor 3D structure (equivalent to
vanilla generator)

� K=2: Suboptimal but acceptable results

� K=4: Best trade-o� between quality and
e�ciency Figure: E�ect of progressive steps (K): K=1

fails to generate proper 3D structures, K=2
produces acceptable results, while K=4
achieves the best balance between quality
and e�ciency.



More Ablation Studies

E�ect of Multiple Teachers:

� Stable Di�usion (SD): Ensures
high-�delity textures and text
consistency

� MVDream (MV): Provides multi-view
consistency, reduces Janus problem

� RichDreamer (RD): Improves
geometry supervision through
normal/depth maps

� Combined: Maximizing strengths of all
teachers yields optimal results Figure: E�ect of multiple teachers:

Combining SD, MV and RD models yields
optimal results.



Dual Rendering for Multi-View Distillation

Why Dual Rendering?

� Volumetric Rendering:

| Complete 3D space supervision
| Ensures geometric consistency
| Handles complex topology

� Mesh Rasterization:

| High-resolution texture details
| Faster rendering speed
| Better surface quality

� Combined Bene�ts:

| Ensures training stability
| Improves output quality
| Balances e�ciency and quality

Figure: Dual rendering approach:
Volumetric rendering provides complete 3D
supervision while mesh rasterization enables
high-resolution texture details



E�ect of LoRA Rank

Impact of LoRA Rank:

� Rank Selection Trade-o� :

| Lower rank: More parameter e�cient
but limited capacity

| Higher rank: Better quality but
increased parameters

� Our Findings:

| Rank=8: Insu�cient for complex
geometry

| Rank=16: Optimal balance of quality
and e�ciency

| Rank=32: Marginal improvements,
excessive parameters

Figure: Ablation study on LoRA rank:
Rank=16 achieves the best trade-o�
between generation quality and parameter
e�ciency
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Conclusion and Future Work

Summary:

� First method to adapt SD for 3D generation without 3D data

� Parameter-e�cient approach (only 2.5% additional parameters)

� State-of-the-art performance in both quality and speed

� Scales well with more text data

Limitations and Future Work:

� Challenges with generating precise numbers of multiple objects

� Limited facial and hand details for full-body humans

� Potential extension to 3D scene generation and image-to-3D tasks

� Apply to other pre-trained models (e.g., DiT)



Demo

Thank you!

Questions?

Paper arXiv Demo Code

Link arxiv.org/abs/2403.15319 HuggingFace GitHub

@articlefma2025progressive,
title=fProgressive Rendering Distillation: Adapting Stable Diffusion for Instant
Text-to-Mesh Generation without 3D Datag,
author=fMa, Zhiyuan and Liang, Xinyue and Wu, Rongyuan and Zhu, Xiangyu and Lei, Zhen
and Zhang, Leig,
booktitle=fProceedings of the IEEE/CVF conference on computer vision and pattern
recognitiong,
year=f2025g
g

https://theericma.github.io/TriplaneTurbo/
https://arxiv.org/abs/2403.15319
https://huggingface.co/spaces/ZhiyuanthePony/TriplaneTurbo
https://github.com/theEricMa/TriplaneTurbo
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