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Figure 1. Our method adapts Stable Diffusion [89] to generate high-fidelity textured meshes in 1.2 seconds.

Abstract

It is highly desirable to obtain a model that can gener-
ate high-quality 3D meshes from text prompts in just sec-
onds. While recent attempts have adapted pre-trained text-
to-image diffusion models, such as Stable Diffusion (SD),
into generators of 3D representations (e.g., Triplane), they
often suffer from poor quality due to the lack of sufficient
high-quality 3D training data. Aiming at overcoming the
data shortage, we propose a novel training scheme, termed
as Progressive Rendering Distillation (PRD), eliminating
the need for 3D ground-truths by distilling multi-view dif-
fusion models and adapting SD into a native 3D gener-
ator. In each iteration of training, PRD uses the U-Net
to progressively denoise the latent from random noise for
a few steps, and in each step it decodes the denoised la-
tent into 3D output. Multi-view diffusion models, includ-
ing MVDream and RichDreamer, are used in joint with SD
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to distill text-consistent textures and geometries into the
3D outputs through score distillation. Since PRD supports
training without 3D ground-truths, we can easily scale up
the training data and improve generation quality for chal-
lenging text prompts with creative concepts. Meanwhile,
PRD can accelerate the inference speed of the generation
model in just a few steps. With PRD, we train a Tri-
plane generator, namely TriplaneTurbo, which adds only
2.5% trainable parameters to adapt SD for Triplane gener-
ation. TriplaneTurbo outperforms previous text-to-3D gen-
erators in both efficiency and quality. Specifically, it can
produce high-quality 3D meshes in 1.2 seconds and gener-
alize well for challenging text input. The code is available
at github.com/theEricMa/TriplaneTurbo.

1. Introduction

Text-to-3D aims to create 3D content faithful to the given
textual descriptions. The optimization-based text-to-3D
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methods can achieve high generation fidelity by using im-
age diffusion priors [53, 63, 68, 70, 73, 86, 96, 113] and
score distillation techniques [43, 57, 75, 84, 114, 119, 148,
158] to optimize 3D representations [10, 30, 60, 61, 108].
However, these approaches encounter bottlenecks in com-
putational efficiency since they take hours to generate 3D
textured meshes. Recent researches have shifted towards
learning-based methods [7, 25, 38, 50, 82], which generate
3D content through feedforward networks, reducing the la-
tency to a few seconds per output. Unfortunately, existing
3D datasets [16–18, 83, 127] are much smaller compared
to those used in training text-to-image generation models,
while the 3D data therein suffer from texture quality and
inconsistent object poses [62]. Consequently, these ap-
proaches struggle to produce high-quality 3D outputs. As
a promising alternative to the above mentioned methods,
one can adapt pretrained text-to-image models, such as Sta-
ble Diffusion (SD) [89], into generators of 3D representa-
tions [55, 67, 78]. Recent studies have enabled the use of
SD to generate 2D planes for 3D representations such as
Triplane [8]. PI3D [67] adapts SD to generate six 2D planes
pre-optimized for 3D object reconstruction. HexaGen [78]
first trains a VAE to compress 3D objects into latent space,
then adapts SD to generate the desired latents from text
prompts. These methods leverage SD’s prior knowledge for
diverse text prompts while reducing training costs. How-
ever, their reliance on data-driven training limits the gener-
alization performance.

In this paper, we propose to address the data shortage
problem by using high-quality multi-view diffusion mod-
els [68, 86, 96] as teachers and performing multi-view dis-
tillation to adapt SD into an instant text-to-mesh generator
without using 3D ground-truth data. Data-free distillation
techniques [71, 159] have been applied in previous meth-
ods [52, 72, 75, 134] to train native 3D generators from
scratch, whereas they struggle to produce high-quality 3D
outputs. We argue that if we can adapt SD for native 3D
generation, instead of training from scratch, not only the
training efficiency can be improved but also the generation
quality can be enhanced. To our best knowledge, however,
no such attempt has been made before. The primary ob-
stacle lies in the training scheme of SD, which requires 3D
ground-truth data to supervise the denoising process. This
requirement, unfortunately, conflicts with our goal to elimi-
nate the dependency on 3D training data.

To address the above challenges, we propose Progres-
sive Rendering Distillation (PRD), which enables 3D-
data-free distillation. PRD achieves this goal by denois-
ing the latent from random noise rather than 3D ground-
truths. In each training iteration, PRD uses a few steps to
progressively reverse noise to latent space using the adapted
U-Net of SD. Then the denoised latent of each step is de-
coded to 3D content via the adapted VAE decoder. Multi-

view teacher models are used to distill high-quality render-
ings through efficient score distillation techniques such as
ASD [75]. An additional benefit of PRD is that by adapting
the SD to generate 3D content in just four steps, the overall
generation process can be much accelerated.

PRD is flexible in the choices of multi-view teacher mod-
els and the types of 3D representations. Unlike existing
approaches using SD alone as the teacher [60, 107, 119,
144, 158], which risk the multi-view inconsistency and the
Janus problem [4], we employ multiple teachers in training.
Specifically, we employ MVDream [96] and SD to suppress
the Janus problem and ensure text consistency in 3D con-
tent supervision. Additionally, we use RichDreamer [86]
for geometry supervision through normal and depth. With
PRD, we adapt SD into a native 3D generator to produce
geometry and texture Triplanes in 4 steps, which is named
as TriplaneTurbo in the following context. To enhance Tri-
planeTurbo’s textured mesh quality, we employ SDF-based
volumetric rendering [142] and mesh rasterization [122] for
multi-view teacher supervision.

In addition, to address the high GPU memory usage
caused by multiple teachers and multi-view renderings in
the training process, we introduce the Parameter-Efficient
Triplane Adapter (PETA), which adds only 2.5% trainable
parameters to the frozen SD and effectively adapts it for 3D
generation. Some results are shown in Fig. 1. To our knowl-
edge, this is the first parameter-efficient training method for
direct 3D content generation from 2D diffusion models, de-
parting from full-parameter adaptation approaches. Our key
contributions are summarized as follows:
• We make the first attempt to adapt the pretrained 2D SD

model into a native 3D generator without 3D data. With
the proposed PRD scheme, we use multi-view diffusion
models as teachers and distill SD into a four-step native
3D generator, namely TriplaneTurbo.

• TriplaneTurbo adds only 2.5% additional trainable pa-
rameters to the frozen SD for Triplane adapation. It marks
the first use of parameter-efficient training to adapt 2D
diffusion models for native 3D generation.

• TriplaneTurbo surpasses existing text-to-3D models not
only in quality but also in speed, reducing text-to-mesh
generation time to just 1.2 seconds. In addition, by scal-
ing up the text training data, the model can generalize
much better to complex text input.

2. Related Work
Data-Driven Models for 3D Generation. Employing 3D
data to train generators has shown its effectiveness for
single-category 3D generation such as human faces [2, 8,
32, 74, 101, 129, 132], body shapes [35, 58, 91, 138], ev-
eryday objects [3, 40, 66, 80] , and structured room lay-
outs [5, 21, 77, 88, 110, 130]. This is mainly because
for these specific categories, the training data are relatively
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easy to collect. However, text-to-3D generation requires
open-category generation, bringing a rather different chal-
lenge. The difficulties in obtaining sufficient 3D training
data largely limit the model generalizability across diverse
text prompts [75], regardless of the type of used gener-
ation models (e.g., GAN [24, 81, 93] or diffusion mod-
els [29, 41, 99]) or 3D representations (e.g., NeRF [6, 79]
or Gaussian Splatting [45, 149]). The publicly available 3D
datasets [16–18, 83, 127] mostly contain only hundreds or
thousands of samples, which are very hard, if not impossi-
ble, to train a generalized text-to-3D generation model.

2D Diffusion Models for 3D Generation. The difficulty
of text-to-3D generation can be alleviated by leveraging
2D diffusion models as priors, thanks to their training on
vast text-image pairs. Early approaches like SDS [107]
and VSD [13] pioneered zero-shot text-to-3D generation
by optimizing 3D representations (NeRF [60, 63, 84, 114],
mesh [11, 60, 119, 140], 3DGS [57, 108, 144, 145]) through
score distillation [1, 37, 42, 56, 57, 75, 84, 106, 117, 119,
121, 131, 147, 155, 157, 160], which serves as a bridge
to transfer the generative capability of 2D diffusion mod-
els to 3D representations through rendered views. How-
ever, pre-trained text-to-image models like SD lack multi-
view consistency, leading to the Janus problem [4]. MV-
Dream [96] and subsequent works [36, 69] address this is-
sue by camera-aware adaptations and synchronized multi-
view generation, and they incorporate additional modalities
such as normal [86], depth [22, 44], and CCM [65, 135]
to enhance geometric quality. While achieving improved
3D generation results, these methods require computation-
ally intensive score distillation [12, 86, 92, 96] or 3D recon-
struction [33, 54, 64, 70, 95, 109, 120, 139, 151]. Native
3D generators [17, 26, 35, 50, 51, 59, 76, 111, 126, 133,
150, 153, 153, 156, 156] can reduce the generation time to
seconds by directly producing 3D content without view ren-
dering as proxies. For example, LN3Diff [50] and GVGEN
[26] compress NeRF [79] and 3DGS [45] into latent spaces
using VAEs [48], then train text-conditioned latent diffu-
sion models [29]. However, these methods show limited
generalizability across text prompts, as their performance is
constrained by the insufficient text-3D training pairs.

Some methods [67, 78, 86, 96] leverage SD as their
backbone to transfer text-to-image knowledge into text-
to-3D generation. SD provides strong generative prior
and improves the model generalizability [9, 19, 59, 102–
105, 124, 125, 141, 152]. Approaches like PI3D [67] adapt
SD to generate multiple planes for constructing 3D space,
yet their performance remains limited due to the insuffi-
cient 3D training data. Instead of adapting SD for multi-
view generation, native 3D generation requires substantially
more 3D data for effective adaptation. We propose to ad-
dress the data insufficiency challenge by distilling knowl-
edge from multi-view diffusion models into an SD-adapted

native 3D generator, eliminating the need for 3D training
data. While previous works like ATT3D [72] and Scale-
Dreamer [75] have investigated such a data-free training
strategy, they employ multi-view distillation to train gen-
erators from scratch, and show limited performance due
to the insufficient training scale. To overcome the huge
training cost, we propose a cost-effective solution that com-
bines multi-view distillation with SD-based native 3D gen-
eration. A fundamental challenge to achieve this goal is how
to adapt SD for 3D generation without ground-truth data.
We address this by proposing a novel Progressive Render-
ing Distillation scheme, which not only eliminates the need
of 3D ground-truths but also enables few-step generation.

3. Method
3.1. Preliminary
Stable Diffusion (SD) performs diffusion in latent space for
efficient text-to-image generation. Its VAE encoder EϕSD

compresses an image x into a latent code z, while its de-
coder DϕSD reconstructs the image. Given text prompt y,
a U-net ϵϕSD predicts noise ϵ, which is added to zt =
αtz + σtϵ, where timestep t ∈ 1, . . . , T controls noise
level via scalars αt and σt. Generation proceeds by iter-
atively denoising from zT to prompt-aligned z0. At each
step, the U-net estimates noise ϵ̂ = ϵϕSD(zt; t, y) to com-
pute ẑ0 = zt−σtϵ̂

αt
, denoted as ẑ0 = zϕSD(zt; t, y). Results

can be refined through additional diffusion steps t′ < t. The
final latent is decoded to an image via x̂ = DϕSD(ẑ0).
Score Distillation. 2D diffusion models can optimize 3D
representations θ through differentiable rendering xπ =
g(θ, π) [46, 94, 97], which produces images xπ from cam-
era view π. Here 2D diffusion models serve as a metric
L(xπ;π, y) that measures the consistency between xπ and
the text conditions y. The 3D representation is optimized
using gradient ∇θL(xπ;π, y) = ∇xπL(xπ;π, y)

∂xπ

∂θ ,
which also trains the native 3D generator. The computation
of∇xπL depends on the chosen score distillation method.

3.2. Progressive Rendering Distillation
We now detail our proposed training scheme for adapting
SD as a native 3D generator. Traditional adaptation ap-
proaches require preparing ground-truth 3D representations
θ and their corresponding latents z for each 3D sample in
the dataset. The U-net is adapted to denoise diffused latents
zt by minimizing the noise prediction mean squared error
(MSE). Fig. 2(a) illustrates this paradigm, which has been
used by several native 3D generators [67, 118, 126, 153].
However, this paradigm faces limitations in both the quan-
tity and quality of available 3D representations θ, as exist-
ing 3D datasets lack sufficient high-quality data for training
text-to-3D generators. Actually, the pretrained SD models
already possess denoising capabilities for image generation.
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Figure 2. Comparison between (a) traditional SD adaptation and (b) our proposed progressive rendering distillation (PRD) for native 3D
generation. Traditional approach requires ground-truth 3D representations θ and their latents z0 for each 3D sample to generate z0. Our
proposed PRD scheme progressively denoises latents zt initialized from random noise into z0, which are decoded to θ, using multi-view
diffusion models as teachers for distillation, eliminating the need for 3D data during adaptation and overcoming data scarcity.

In other words, pretrained SD is well-trained for a Markov
Chain to reverse zT = ϵ ∼ N (0, I) to z0 with its U-
net zϕSD , and decode z0 to image with its decoder DϕSD .
Our goal is to modify the Markov chain by transforming
zϕSD and DϕSD into 3D generators zϕ3D and Dϕ3D , from
which the 3D representations θ can be decoded. Note that
our modification of the Markov chain differs from the tra-
ditional diffusion model adaptation objectives, as it requires
neither ground-truth latents z0 nor their noise-diffused vari-
ants zt in the training process.

Specifically, at the beginning of the Markov chain, the
network takes random noise ϵ as input to represent zT . At
each step, the current state zt is used to estimate ẑ0 through
zϕSD , which is then decoded to 3D output θ̂ with DϕSD . The
3D output θ̂ is used to render images xπ1 ,xπ2 , . . . at cam-
era views π1, π2, . . . and receive supervision from multi-
view teachers via score distillation, while the estimated ẑ0

is diffused to the next timestep t′ as zt′ = αt′ ẑ0 + σt′ϵ
for subsequent operations. We name this training scheme
Progressive Rendering Distillation (PRD), as illustrated in
Fig. 2(b). From the total T timesteps, we select a decreasing
sequence of K timesteps T = t1 > t2 > · · · > tK = T/K
with uniform spacing to perform score distillation from
multi-view teachers. The gradient at each step is not back-
propagated to previous steps; therefore, we can largely re-
duce the GPU memory usage and prevent gradient explo-
sion [15, 85, 128, 137]. Since ϕ3D is initialized from ϕSD,
this specialized gradient detachment strategy still maintains
good convergence. The pseudo code of our algorithm is
provided in Algorithm 1. While the time cost of our train-
ing strategy increases with the increase of K, we can ensure
the model generates high-quality results in just a few steps,
thereby accelerating inference. We set K = 4 to balance
quality and speed.

3.3. Parameter-Efficient Triplane Adaptation

While various 3D representations could be employed by
our PRD scheme, in this paper we demonstrate an exem-
plar solution using Triplanes as the representation. We de-
note our adapted model as TriplaneTurbo with parame-
ters ϕ3D. Specifically, TriplaneTurbo adapts SD to gen-
erate a 3D representation consisting of two Triplanes [8]
θ = (θgeo, θtex): a geometry Triplane θgeo storing Signed
Distance Function (SDF) and deformation values for mesh
extraction, and a texture Triplane θtex containing RGB at-
tributes for painting texture on the mesh. For each point
in 3D space, we use a two-layer MLP to decode its SDF
value. The same process applies to texture and mesh defor-
mation [94, 122]. This separation of geometry and texture
planes follows the work in [23, 100, 123]. We set the Tri-
plane resolution as 256× 256, and replace the last convolu-
tion in SD’s decoder to output 32 channels. The Triplanes’
output has a dimension of 6 × 256 × 256 × 32 in feature
space. Due to the 8× compression of the VAE, this corre-
sponds to 6× 32× 32× 4 in latent space, distinct from the
1 × 64 × 64 × 4 latent generated by pretrained SD. To en-
able interaction between the six feature planes, we follow
existing approaches [70, 95, 96, 115] to adapt the U-net’s
self-attention [89, 112] to allow cross-plane attention. Un-
like existing works that fully retrain SD [12, 55, 67, 78, 96],
which can lead to catastrophic forgetting [67, 96], we pro-
pose a parameter-efficient adaptation approach. The core of
our design lies in the fact that each of the six feature planes
maintains its own unique feature distribution. Therefore,
plane-specific characteristics must be incorporated into the
adaptation process. As illustrated in Fig. 3, our adaptation
modifies the convolution, self-attention, and cross-attention
layers. We name our approach Parameter-Efficient Tri-
plane Adaptation (PETA).
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Figure 3. Illustration of TriplaneTurbo: an SD-adapted native 3D generator using our PRD scheme. Our model generates six feature planes
comprising geometry Triplane θgeo and texture Triplane θtex in 4 steps. We introduce Parameter Efficient Triplane Adaptation (PETA),
which requires only 2.5% additional parameters for adaptation. The parameter arrangement is illustrated in the figure.

As shown in Fig. 3, for the convolution blocks
(Res-Blocks) and cross-attention layers, we implement
LoRA [34, 143] for parameter-efficient adaptation, and pro-
cess the six planes uniformly. The plane-specific adapta-
tions are then applied to the self-attention. For the self-
attention blocks, we apply distinct LoRA layers [34] to the
to Q, to K, to V, and to Out linear layers when process-
ing each of the six feature planes. In each linear transfor-
mation within a self-attention block, the linear projection
with multiple LoRAs is implemented in two steps. First,
the frozen linear layer batch processes the features extracted
from all the six planes together. Then, separate LoRA trans-
formations are applied independently to the features of each
plane. This adaptation maintains low computational over-
head while effectively introducing plane-specific processing
during attention calculations across the six feature planes.
It can be applied with other techniques like AdaLoRa [154]
and Vera [49]. We leave this for further exploration. We set
the LoRA rank to 16 by default. While this adaptation adds
only 2.5% of the parameters to the SD model, it effectively
enables native 3D generation.

3.4. Distillation Details
Since PRD eliminates the need for 3D data by referring to
multi-view teachers for distillation, using multiple teach-
ers allows us to combine their strengths while mitigating
individual biases. Most previous works [14, 60, 72, 84,
108] use SD model (parametrized by ϕSD) as the teacher
for its ability to generate high-fidelity, text-consistent im-
ages. However, SD lacks camera-awareness, which can
lead to the Janus problem [4]. MVDream [96] (MV,
parametrized by ϕMV) addresses this by generating four

camera-conditioned views simultaneously, but at the cost
of reduced prompt consistency [115]. While SD and MV
complement each other, both of them focus on RGB ren-
dering and provide no direct supervision on geometry. We
further incorporate RichDreamer [86] (RD, parameterized
by ϕRD), a model that generates four-view normal and
depth maps based on text prompts. The score distilla-
tion guidance L (xπ;π, y) in our implementation thus in-
tegrates SD, MV, and RD. At each PRD step (see Sec. 3.2
and Fig. 2), given a text prompt y and generated 3D rep-
resentation θ̂ from zϕ3D and Dϕ3D , we sample four views
π1, . . . , π4 at uniform azimuth intervals. We sample one
view π from π1, . . . , π4 to compute LSD = LϕSD(xπ;π, y).
For MV, all the four views are used to compute LMV =
LϕMV(xπ1

, . . . ,xπ4
;π1, . . . , π4, y). RD operates on con-

catenated normal and depth renderings x
′

π1
, . . . ,x

′

π4
, and

its objective is LRD = LϕRD (x
′

π1
, . . . ,x

′

π4
;π1, . . . , π4, y).

Among existing score distillation methods [37, 42, 56, 57,
75, 84, 119, 121, 131, 147], we adopt Asynchronous Score
Distillation (ASD) [75] for its pioneered efficiency in train-
ing deep text-to-3D generators. For 3D rendering, as il-
lustrated in Fig. 3, we combine volumetric rendering [142]
with mesh rasterization [122] to overcome the instability of
pure mesh supervision [136]. See Sec. B for more details.

4. Experiments
4.1. Experimental Settings
Implementation Details. For a fair comparison with exist-
ing methods, we use captions of the 3D objects [17] pro-
vided by [31] to train our model, which comprises a total
of 360K text prompts. We employ SD v2.1-base [90] as the
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Figure 4. Qualitative comparison of text-to-mesh generation results by competing methods. Please refer to Sec. 4.2 for details.

base model. Our model is trained for 15K iterations with a
learning rate of 2e-4, costing 40 hours on 8 NVIDIA H20
GPUs. We further collect 1.6 million text prompts to evalu-
ate the benefit of data scaling supported by our method; the
detail is provided in Sec. D. Additional training details and
loss weights are provided in Sec. B.

Compared Methods. Our proposed PRD aims for
fast text-to-mesh generation. Therefore, we compare it
against state-of-the-art approaches that can generate tex-
tured meshes within one minute, including Shape-E [39],
Direct3D [62], 3DTopia [31], GVGEN [26], LN3Diff
[50], LGM [109] and PI3D [67]. Note that we do not
compare with some relevant works [78, 134] since their
codes/models are not publicly available and they employ
different evaluation protocols. In our experiments, the re-
sults of Shape-E, Direct3D, 3DTopia, GVGEN, LN3Diff
and LGM are obtained by running their publicly available
models. For PI3D, we can only perform quantitative com-

parisons with it by copying its results from the original pa-
per, but we cannot perform visual comparisons with it since
its code/model is not yet publicly available.

Evaluation Protocol. We employ the protocol used in
our competing methods [26, 31, 39, 50, 67, 109] to evaluate
our PRD model. Specifically, we use the ViT-B/34 CLIP
model [87] to evaluate the test prompts from the DreamFu-
sion gallery [84]. As in [67], we render the generated 3D
results at 512 resolution from four viewpoints at 15° ele-
vation across four azimuth angles: 0°, 90°, 180° and 270°.
Under these views, we evaluate the performance of com-
peting methods using CLIP Score [27] (C.S.) and CLIP R-
precision (R@1). To ensure a fair comparison for instant
text-to-mesh generation, we exclude the post-processing
steps such as SDS refinement [84], as they will prolong the
generation time by several minutes. For models [26, 109]
using Gaussian Splatting representations, we use the con-
version script from [109] to generate textured meshes.
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4.2. Experimental Results
We showcase qualitative comparisons of the competing
methods in Fig. 4 using challenging test prompts. One can
see that most of the existing methods struggle to gener-
ate satisfactory outputs. Our method, in comparison, pro-
duces better quality results with complete and vivid meshes.
The quantitative results are reported in Tab. 1. Again, our
method demonstrates superior performance to its competi-
tors in all the metrics. Existing methods fall short in the
consistency of object poses and in the capability of han-
dling complex prompts. Our PRD method addresses these
challenges, enabling faster inference speed and improving
the model performance by data scaling.

Handling Inconsistent Generation Poses. As shown in
Fig. 4, existing models often generate objects with incor-
rect poses. For prompts like ‘A teal moped’, the compet-
ing methods like Direct3D [126], Shape-E [39] and GV-
GEN [26] generate objects with misaligned orientations,
such as facing sideways or backwards. This issue stems
from the inconsistent object orientations in 3D training
datasets, which are difficult to detect and correct automat-
ically. Current methods struggle with noisy training data,
leading to pose ambiguity and geometric defects. Our ap-
proach addresses this challenge by learning from multi-
view teachers. Though our teachers are trained on noisy
3D datasets and may occasionally provide incorrect direc-
tional guidance, our PRD scheme exposes the 3D outputs
to multi-view teachers K times per iteration (see Sec. 3.2).
Through the iterative distillation process, we substantially
decrease the impact of incorrect directional guidance, en-
suring consistent pose alignment in the 3D outputs.

Handling Complex Text Prompts. The failure of our
competing methods mainly stems from their reliance on the
existing text-3D paired datasets, which are not comprehen-
sive enough compared to the diverse user inputs. Therefore,
trained on these data, existing methods fail to produce good
results when the input is complex. For example, existing
methods might perform well when the input prompt is ‘A
robot’ but fail when the prompt becomes ‘A robot tiger’.
The quality of existing 3D datasets is also compromised by
the absence of creative concepts. Creating 3D models for
imaginative concepts like ‘A robot tiger’ demands signifi-
cant time and expertise from 3D artists. As a result, existing
3D datasets are largely limited to common everyday objects.
Models trained on these limited datasets fail to generalize
effectively to imaginative or complex prompts. We solve
this problem by adapting SD as a 3D generator and inherit-
ing its generative power, and more crucially, by introducing
a training scheme that completely eliminates the need of
3D data. Our training scheme not only improves the quality
of results on the existing training corpus, as shown by the
qualitative and quantitative results in Fig. 4 and Tab. 1, but
also enhances the capability to handle complex prompts by

C.S. ↑ R@1↑ Latency (/sec)

Shape-E [39] 55.1 27.1 13.0
Direct3D 60.8 4.33 16.0
3DTopia [31] 59.7 11.2 23.7
PI3D∗ [67] 65.9 25.2 3.00
GVGEN [26] 51.1 2.44 49.2
LN3Diff [50] 55.9 5.09 8.16
LGM [109] 67.4 28.3 56.1

Ours 68.2 32.3 1.23
+More Text Data 75.1 46.0 1.23

Table 1. Quality and speed comparison for text-to-mesh genera-
tion. ∗indicates that the values are quoted from the original papers.

expanding the available training data, as detailed below.
Fast Inference Speed. Our PRD method also demon-

strates superior computational efficiency. As shown in
Tab. 1, we evaluate the average inference latency from text
input to textured mesh output across all test prompts on the
H20 GPU device. While some methods [26, 109] require
dozens of steps, our PRD approach enables the native 3D
generator to produce quality results in just K steps. With
the suggested setting of K = 4, as shown in Tab. 1, our
model achieves sub-second latency for text-to-mesh gener-
ation, significantly outperforming previous methods.

Scaling Up Training Corpus. Since our method is free
from the constraints of 3D training data, it can be eas-
ily scaled to accommodate more complex and creative text
prompts during training. It preserves the SD model’s ability
to handle creative concepts throughout the 3D adaptation
process, generating 3D outputs that faithfully represent the
input prompts. As can be seen in the +More Text Data
column, when we scale up the training text data from 360K
to 1.6M, the CLIP similarity improves by as much as 7%,
leading to more consistent generation for challenging text
prompts such as A lion reading the newspaper and A tray
of Sushi containing pugs. This is because our collected text
data covers a wider range of creative concepts than the ex-
isting 3D datasets [17, 127], thus providing more sufficient
training and improving the generalizability of the model.
More visual examples are partially presented in Fig. 1 and
detailed in Fig. 5 and Fig. 8.

4.3. Ablation Study
The Effectiveness of PRD. We validate our PRD algo-
rithm by testing a simplified configuration with K=1, which
reduces our method to a single-step generation process that
is equivalent to a vanilla native 3D generator trained by
score distillation [75]. As shown in Fig. 6 and quantified
in Tab. 2, this configuration fails to generate proper 3D
structures because it needs to simultaneously handle two
complex challenges: adapting SD for 3D generation and
performing single-step generation. In contrast, our PRD

7



Figure 5. More results of our model trained with expanded corpus.
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Figure 6. Visualizations on the ablation studies of PRD algorithm.

C.S. ↑ R@1 ↑
K=1 50.9 14.4
K=2 62.6 22.4
K=4 (Proposed) 68.2 32.3

Table 2. Ablation study on the hyper-parameters of PRD.

scheme can use alternative step configurations such as
K=2, which produces suboptimal yet acceptable results.
We found that the configuration of K=4 provides the
best trade-off between output quality and computational
efficiency, which is used as the default setting of PRD.

The Effectiveness of PETA. We first compare our pro-
posed PETA method with conventional full parameter fine-
tuning (shown as Full Param Tuning in Fig. 7 and Tab. 3).
We see that full parameter fine-tuning exhibits training
instability and catastrophic forgetting, resulting in text-
inconsistent outputs. We then conduct additional ablation
studies using vanilla LoRA tuning, maintaining an equiv-
alent parameter size (22.6M), shown as the configuration
of w/ Basic LoRA. We see that this vanilla adaptation
produces degraded geometric structures and textures, and
lacks the capability to handle the unique characteristics of
each plane. Since different geometry and texture planes
(see Fig. 3) exhibit distinct feature distributions, they re-
quire specialized consideration. Our solution (denoted as
w/ PETA) considers plane dependency using multiple Lo-
RAs in self-attention blocks, enabling each plane to main-
tain its unique representation while allowing cross-plane in-
teractions during self-attention computation. As shown in
Fig. 6 and Tab. 2, PETA achieves enhanced 3D generation
quality with good text consistency.

We also perform ablation studies to investigate the im-
pact of multiple multi-view teachers in training, the choice
of LoRA rank, our hybrid rendering approach that combines
volumetric rendering [116] and mesh rasterization [122] for
multi-view distillation in PRD training scheme. The details

Figure 7. Visualizations on the ablation study of PETA.

C.S. ↑ R@1 ↑
Full Param Tuning 35.8 0.35
w/ Basic LoRA 54.2 11.1
w/ PETA (Proposed) 68.2 32.3

Table 3. Ablation study on the effectiveness of PETA.

can be found in Sec. E.

5. Conclusion and Limitation
In this paper, we presented Progressive Rendering Dis-
tillation (PRD), a novel training scheme that adapts Sta-
ble Diffusion (SD) for instant text-to-mesh generation
without relying on 3D data. We also introduced PETA
(Parameter-Efficient Triplane Adaptation), a parameter-
efficient method that introduces only 2.5% additional pa-
rameters to effectively enable SD for instant text-to-mesh
generation. Our model, namely TriplaneTurbo, can pro-
duce text-consistent textured meshes in only 1.2 second.
Through comprehensive experiments, we validated the ef-
fectiveness of our approach. Our methodology has the po-
tential to be extended to 3D scene generation and image-to-
3D tasks. While currently implemented with SD, the PRD
approach can also be applied to other pre-trained models
like DiT [20]. We hope our work can inspire new directions
in 3D generation to overcome the dependency on 3D data.

Limitations. One limitation of our method lies in
the generation of precise numbers of multiple 3D objects,
which may require more sophisticated multi-view teachers,
potentially enhanced with layout guidance. Besides, our re-
sults for full-body humans might exhibit limited facial and
hand details, which can be improved by extending SD adap-
tation to more advanced 3D structures than Triplane.
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[3] Titas Anciukevičius, Zexiang Xu, Matthew Fisher, Paul
Henderson, Hakan Bilen, Niloy J Mitra, and Paul Guerrero.
Renderdiffusion: Image diffusion for 3d reconstruction, in-
painting and generation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 12608–12618, 2023. 2

[4] Mohammadreza Armandpour, Ali Sadeghian, Huangjie
Zheng, Amir Sadeghian, and Mingyuan Zhou. Re-imagine
the negative prompt algorithm: Transform 2d diffusion into
3d, alleviate janus problem and beyond. arXiv preprint
arXiv:2304.04968, 2023. 2, 3, 5

[5] Sherwin Bahmani, Jeong Joon Park, Despoina Paschalidou,
Xingguang Yan, Gordon Wetzstein, Leonidas Guibas, and
Andrea Tagliasacchi. Cc3d: Layout-conditioned genera-
tion of compositional 3d scenes. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 7171–7181, 2023. 2

[6] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 5855–5864,
2021. 3

[7] Ziang Cao, Fangzhou Hong, Tong Wu, Liang Pan, and Zi-
wei Liu. Large-vocabulary 3d diffusion model with trans-
former. arXiv preprint arXiv:2309.07920, 2023. 2

[8] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki
Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis,
et al. Efficient geometry-aware 3d generative adversar-
ial networks. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 16123–
16133, 2022. 2, 4

[9] Bin Chen, Gehui Li, Rongyuan Wu, Xindong Zhang, Jie
Chen, Jian Zhang, and Lei Zhang. Adversarial diffusion
compression for real-world image super-resolution. arXiv
preprint arXiv:2411.13383, 2024. 3

[10] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fan-
tasia3d: Disentangling geometry and appearance for high-
quality text-to-3d content creation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), 2023. 2

[11] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fan-
tasia3d: Disentangling geometry and appearance for high-
quality text-to-3d content creation. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 22246–22256, 2023. 3

[12] Yabo Chen, Jiemin Fang, Yuyang Huang, Taoran Yi, Xi-
aopeng Zhang, Lingxi Xie, Xinggang Wang, Wenrui Dai,
Hongkai Xiong, and Qi Tian. Cascade-zero123: One image
to highly consistent 3d with self-prompted nearby views.
arXiv preprint arXiv:2312.04424, 2023. 3, 4

[13] Xinhua Cheng, Tianyu Yang, Jianan Wang, Yu Li, Lei
Zhang, Jian Zhang, and Li Yuan. Progressive3d: Pro-
gressively local editing for text-to-3d content creation with
complex semantic prompts, 2023. 3

[14] Jaeyoung Chung, Suyoung Lee, Hyeongjin Nam, Jaerin
Lee, and Kyoung Mu Lee. Luciddreamer: Domain-free
generation of 3d gaussian splatting scenes. arXiv preprint
arXiv:2311.13384, 2023. 5

[15] Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet.
Directly fine-tuning diffusion models on differentiable re-
wards. arXiv preprint arXiv:2309.17400, 2023. 4

[16] Jasmine Collins, Shubham Goel, Kenan Deng, Achlesh-
war Luthra, Leon Xu, Erhan Gundogdu, Xi Zhang, Tomas
F Yago Vicente, Thomas Dideriksen, Himanshu Arora,
et al. Abo: Dataset and benchmarks for real-world 3d ob-
ject understanding. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
21126–21136, 2022. 2, 3

[17] Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong
Ngo, Oscar Michel, Aditya Kusupati, Alan Fan, Chris-
tian Laforte, Vikram Voleti, Samir Yitzhak Gadre, Eli
VanderBilt, Aniruddha Kembhavi, Carl Vondrick, Georgia
Gkioxari, Kiana Ehsani, Ludwig Schmidt, and Ali Farhadi.
Objaverse-XL: A universe of 10m+ 3d objects. In Thirty-
seventh Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track, 2023. 3, 5, 7, 19, 20,
22

[18] Laura Downs, Anthony Francis, Nate Koenig, Brandon
Kinman, Ryan Hickman, Krista Reymann, Thomas B
McHugh, and Vincent Vanhoucke. Google scanned objects:
A high-quality dataset of 3d scanned household items. In
2022 International Conference on Robotics and Automa-
tion (ICRA), pages 2553–2560. IEEE, 2022. 2, 3

[19] Slava Elizarov, Ciara Rowles, and Simon Donné. Ge-
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Supplementary Material to
“Progressive Rendering Distillation: Adapting Stable Diffusion for

Instant Text-to-Mesh Generation without 3D Data”

The contents of this supplementary file include:
• Progressive Rendering Distillation pseudo code (referring to Sec. 3.2 in the main paper).
• More implementation details (referring to Sec. 4.1 in the main paper).
• Additional qualitative comparisons (referring to Sec. 4.2 in the main paper).
• Additional results with expanded training corpus (referring to Sec. 4.2 in the main paper).
• Additional ablation experiments (referring to Sec. 4.3 in the main paper).

A. Pesudo Code
The pseudo-code of our Progressive Rendering Distillation (PRD) training scheme is appended in Algorithm 1.

B. More Implementation Details
Dual rendering. We integrate DiffMC [122] for mesh rasterization and NeuS [116] for volume rendering to supervise the
generation of 3D outputs. Such a dual rendering approach can ensure the training stability: when SDF values are all positive
or all negative throughout the 3D space and thus the mesh extraction fails, volume rendering can still guide the training
process to optimize the 3D space. Due to memory constraints, volume rendering is limited to low resolution (128 × 128).
We complement this with high-resolution (512 × 512) mesh rasterization. To handle mesh extraction failures caused by
the uniformly distributed SDF signs, we implement the method proposed in [136] to artificially enforce the position of the
zero-level set in the 3D space. We manually control gradient magnitudes during backpropagation. The gradient of volume
rendered multi-views with respect to the texture decoding MLP starts at 1.0 and linearly decreases to 0.01 at the end of
training, preventing blurry textures caused by low-resolution volume rendering supervision. The gradient of mesh rasterized
multi-views with respect to both the SDF decoding MLP and deformation decoding MLP is fixed at 0.001 throughout training,
which stabilizes training and improves generation performance.

Training objective. With the multi-view teacher [86, 89, 96], we decode the multi-views xπ to latent zπ , which are
diffused by adding Gaussian noise at timestep t [29], denoted by zπ,t. We write the diffusion module of the multi-view
teacher as zϕ2D (zπ,t; t, π, y) to represent the process of noise prediction and latent denoising, where y is the text prompt.
With ASD [75], the derivative of the objective with respect to the 3D generator ϕ3D is:

∇ϕ3DLϕ2D (xπ;π, y) = Et,ϵ,∆t

[
ω(t)

(
zCls
ϕ2D (zπ,t; t, π, y)− zϕ2D (zπ,t+∆t; t+∆t, π, y)

) ∂zπ

∂ϕ3D

]
, (1)

where ϕ2D denotes the teacher model parameters, t is sampled from U [TMin, TMax] with 0 < TMin < TMax < T = 1000,
and Cls indicates classifier-free guidance (CFG) [28]. By introducing a timestep shift ∆t [75] sampled from a uniform
distribution U [0, η(t − TMin)], ASD achieves more effective training of the native 3D generator. We utilize the timestep-
dependent weighting factor from DMD [146], as implemented in [103, 124]. We let

ω(t) =
1

NoGrad(Mean(zπ − zCls
ϕ2D (zπ,t; t, π, y))) + δ

, (2)

where NoGrad detaches gradients for loss back-propagation, and Mean applies L1-norm across height, width, channel
dimensions and all rendered views. Unlike [103, 124, 146], we add constant δ = 0.1 to the denominator, which stabilizes
training and improves generation performance. We apply this objective function to supervise 3D outputs using three teacher
models (SD, MV, RD) and two rendering pipelines (volume rendering and mesh rasterization). Regarding the sampling
range of timestep t, TMax = 980 throughout training, while TMin starts at 500 and linearly decreases to 20. Teacher-specific
hyperparameters vary: RD uses CFG=20 and η = 0.1; MV uses CFG decreasing from 20 to 10 and η = 0; SD uses CFG=5
and η = 0. Setting η = 0 for multi-view teachers that supervise RGB renderings aligns with the findings in PiSA-SR [103].
Additionally, we incorporate regularization terms during training, such as sparsity loss [84] and eikonal loss [142]. We
linearly reduce the sparsity and eikonal loss weights from 1 to 0 throughout the training process.
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Figure 8. More results of our model trained with expanded corpus.
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Algorithm 1 Progressive Rendering Distillation (PRD)
Input: SD-based native 3D generator with zϕ3D and Dϕ3D ; score distillation objective Lϕ2D parameterized by multi-view

diffusion model ϕ2D; prompt corpus Sy; number of rendered views N ; number of steps K
1 Initialize optimizer Opt for zϕ3D and Dϕ3D

2 Define fixed timesteps T = t1 > t2 > · · · tK > 0
3 while not converged do
4 Sample text prompt y ∈ Sy
5 Sample ẑ0 ∼ N (0, I)
6 for t← t1 to tK do
7 Sample ϵ ∼ N (0, I)
8 zt ← αtẑ0 + σtϵ
9 ẑ0 ← zϕ3D(zt; t, y)

10 θ̂ ← Dϕ3D(ẑ0)
11 Sample K camera poses π1, . . . , πN

12 for i← 1 to N do
13 xπi

← g(θ̂, πi)
14 end
15 L← Lϕ2D (xπ1 , . . . ,xπN

;π1, . . . , πN , y)

16 Save 1
K∇ϕ3DL in Opt

17 end
18 Update zϕ3D and Dϕ3D with gradient saved in Opt

19 end
20 return zϕ3D and Dϕ3D

Figure 9. Qualitative comparison with LATTE3D [134].

Noise schedule. The PRD training incorporates progressive noise addition to the denoised latents (see Line 8 in Algo-
rithm 1). Being adapted from SD [89], our native 3D generator follows the DDPM [29] noise schedule in training. During
inference, we employ DDIM [98].

C. More Qualitative Comparison Results
Comparison with methods adapting SD as native 3D generators. Since the codes or trained models of current SD-based
native 3D generators [67, 78] are not publicly available, we conduct our comparisons by using their visual results presented
in the original publications. The qualitative comparisons with PI3D [67] and HexaGen3D [78] are presented in Fig. 10
and Fig. 11, respectively. As both the two compared methods employ data-driven training, they inherit pose inconsistencies
existed in the 3D training datasets [17], leading to the issue of occasional pose misalignment. This can be clearly observed
from PI3D’s result of ‘A dalmatian wearing a fireman’s hat’ shown in Fig. 10, where the dog is oriented sideways. The com-
parison results demonstrate our method’s superior visual fidelity with the input prompts. These improvements are attributed
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Figure 10. Qualitative comparison with PI3D [67]. Figure 11. Qualitative comparison with HexaGen3D [78].

to our proposed Progressive Rendering Distillation (PRD) scheme, which utilizes multi-view teachers in training without
requiring 3D training data.

Comparison with native 3D generators trained with score distillation. We further compare our approach with existing
methods that employ score distillation for native 3D generator training. Specifically, we compare against the current state-of-
the-art method, LATTE3D [134]. Since the code or model of LATTE3D is unavailable, we conduct qualitative comparisons
using their published results. The visual comparisons are presented in Fig. 9. It can be seen that our method demonstrates
notable improvements in both texture fidelity and geometric accuracy. For example, in ‘A blue tulip’, our model captures more
natural flower textures, while in ‘A pile of dice on a green tabletop’, our model achieves more precise geometric structures.
These improvements can be attributed to our strategic adaptation of SD as the backbone architecture, which allows our model
to leverage its powerful generative capabilities.

D. Expanding Training Corpus

Since our proposed training scheme does not require 3D ground truth data, it can be easily up-scaled to a large amount of
text prompts. We collect a total number of 1.7 million text prompts from HuggingFace that were used to generate images by
DALL-E and Midjourney. This corpus has more unnatural prompts than the Objaverse [17], and it is more challenging. To
the best of our knowledge, our work is the first that can process more than 1 million training data. Our model, trained on
this expanded dataset, achieves enhanced visual quality, as demonstrated in Fig. 1 in the main paper and Fig. 5, Fig. 8 in this
supplementary file.

E. More Ablation Studies

The necessity of multiple teachers. We employ SD [89], MV [96] and RD [86] as teachers for multi-view supervision of
RGB, normal and depth maps. Here we perform ablation studies by systematically removing individual components.

First, as visualized by w/o SD in Fig. 12, when SD is removed, leaving only MV and RD as teachers, the model can
collapse to generate results inconsistent with text prompts. For example, given the prompt ‘A DSLR photo of a cracked
egg with the yolk spilling out on a wooden table’, the model collapses to generating a stack of discs. This occurs because
training for multi-view generation may impair MV and SD’s text understanding capabilities, resulting in outputs that diverge
from the specified text descriptions. SD can prevent from training collapse and improve the generation stability. Second,
the importance of MV is demonstrated by the visualizations of w/o MV in Fig. 12. Without multi-view RGB supervision,
the generated results tend to show repetitive and redundant contents across different viewpoints. For instance, multiple ‘egg
yolks’ might appear in the results of ‘A DSLR photo of a cracked egg with the yolk spilling out on a wooden table’. Finally,
the importance of RD is validated by the visualizations of w/o RD. We can see that adding normal and depth constraints
enhances text consistency in the outputs, such as the generated ‘wooden table’ in the results of ‘A DSLR photo of a cracked
egg with the yolk spilling out on a wooden table’. Overall, the combination of SD, MV, and RD as teachers achieves the best
results, as validated by the visualization of w/ All and the metrics shown in Tab. 4.
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Figure 12. Visualizations for the ablation study on jointly using SD, MV and RD as multi-view teachers.

C.S. ↑ R@1 ↑
w/o SD 63.0 20.1
w/o MV 67.4 25.9
w/o RD 41.5 11.4

w/ All (Proposed) 68.2 32.3

Table 4. Ablation study on jointly using SD, MV and RD as multi-view teachers.

The necessity of dual rendering. We use a dual rendering framework that integrates mesh rasterization [47] and volume
rendering [142] for 3D output supervision, as detailed in Sec. B. The effectiveness of this dual approach is demonstrated
through quantitative and qualitative evaluations in Tab. 5 and Fig. 13, respectively. Without volume rendering, relying solely
on mesh rasterization leads to training collapse and invalid mesh extraction. The results labeled as w/o Volume Rendering
in Fig. 13 demonstrate that training converges to a state where the SDF’s zero-level set vanishes, resulting in mesh extraction
failure and empty space. Conversely, using only volume rendering, which is constrained to low-resolution training, fails to
produce high-quality mesh geometry, leading to rough and coarse textural details, as shown by w/o Mesh Rasterization
in Fig. 13. For example, it fails to produce the shining gold texture for the prompt ‘A DSLR photo of a toilet made out
of gold’. Moreover, without direct mesh supervision, volume rendering-based methods may produce geometrically invalid
structures. This limitation is evident in the result of ’A DSLR photo of aerial view of a ruined castle’, where the extracted
meshes exhibit incorrect structural features and poor textures, manifesting as gray regions in parts of the mesh. As shown by
w/ Both in Fig. 13 and supported by the superior metrics in Tab. 5, our dual rendering approach enables stable training while
producing meshes with detailed textures and well-defined geometric structures.

The choice of LoRA rank. We demonstrate the significance of using a LoRA rank of 16 in our Parameter-Efficient
Triplane Adaption (PETA). With a lower rank of 8, shown as Rank=8 in Fig. 14, the model exhibits insufficient learning
capacity, as evidenced by its failure to generate the top hat structure for the prompt ‘A capybara wearing a top hat, low
poly’. However, setting a higher rank, such as 32, can also lead to unreasonable geometric outputs. As shown in Rank=32
in Fig. 14, some unwanted platform structures appear at the bottom of results of ‘A capybara wearing a top hat, low poly’
and ‘A zoomed out DSLR photo of a baby dragon’. Such artifacts stem from the inherent generation biases in both MV
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Figure 13. Ablation study on dual rendering. The cross mark means the model fails to generate mesh due to training instability.

Figure 14. Visualization for the ablation study on the LoRA rank in PETA.

and SD, as their training dataset [17] contains numerous examples where objects rest on square platforms. As a result, the
multi-view teachers are fitted to generate outputs with similar structures. When the LoRA rank is set too high, the native
3D generator tends to learn and reproduce the biases from the teachers during the distillation. Setting the rank to a balanced
value of 16 enables the model to generate text-aligned 3D results while avoiding the incorporation of undesirable biases into
the 3D generation model. Denoted as Rank=16, both qualitative results in Fig. 14 and quantitative results in Fig. 14 show
that a rank of 16 yields the best performance.

C.S. ↑ R@1 ↑
w/o Volume Rendering 25.1 0.01
w/o Mesh Rasterization 67.4 25.9

Joint (Proposed) 68.2 32.3

Table 5. Ablation study on the dual renders.

C.S. ↑ R@1 ↑
rank=8 62.9 15.6
rank=16 (Proposed) 68.2 32.3
rank=32 66.2 26.6

Table 6. Ablation study on the LoRA rank in PETA.
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